
1Whyte, PFC, Feb 2006

Deuterium retention studies
in Alcator C-Mod

D. Whyte, A.J. Nosek, G. Wright  University of Wisconsin-Madison

B. Lipschultz, PSFC, MIT

PFC divertor meeting

UCSD

Feb.  2006



2Whyte, PFC, Feb 2006

Outline

• Global D retention & recovery.

• Boron and deuterium deposition in tile gaps.
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Recycling and retention studies in
parallel with C-Mod boronization study

• Very accurate gas balance in C-Mod

External pumping closed through discharge
+ 5 minutes

• The recycling effects of BZN are mostly
worn off after 50 shots

PFC surfaces shift from dominant fueling to
pumping

• After initial BZN effect or after in-vessel
boron cleaning PFC surfaces net retain
fuel.

Recycling effects following a boronization
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Both cleaned and boronized Mo surfaces
can retain large amounts of Deuterium fuel

• Pre-boronization:
In-vessel cleaning of all Boron coatings.

~10-20% B near surface (< 1 micron)

• D  retained ~ 25- 50% of that gas injected
for the discharge, essentially independent of
boron coatings.

D retention process uncertain; not expected
for Mo; surface impurities?

Time-integrated retention lower due to
natural and planned disruptions, etc.

• After initial threshold, wall retention has
weak dependence on plasma density.

*See Wright poster KP1.0064, Wednesday, 9:30 AM,
Whyte Oral RO3.00006 Thursday 2:00PM
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Planned disruptions prove effective at recovering
the D from the wall through forced H2 / D2

desorption by surface heating

Found expected energy density
threshold for H2/D2 recovery:

Tmax ~ Wth / Awetted
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Recovered ~30% H2 in 
single operation day.
H/D reduced ~35%

Wall H/D depleted over day!

H/D recovery experiment with planned disruptions
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Further retention studies with cleaned Mo walls.
Repeated discharges show D retention evolution,

but no sign of saturation.

• Retention measurements after May 05
clouded by titanium dust in vessel.

• Subsequent in-vessel cleaning allowed
for retention experiments with Mo
dominated walls.

• Repeat discharges with avoidance of
disruptions in current rampdown, finds
steady-state ~30% retention.

Implications?

• Fuelling:  ~ 5 x ND in plasma

• ITER:  100 g Tritium / pulse
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D retention seems to scale as total ion fluence
to walls:

D retained / D ion to wall  ~ 0.3 - 0.5%

• Discharge duration was varied to
change the total ion bombardment.

• Probes and pressures used to
measure total ions to wall

~1023 ions / shot ~ 100x D2 fuelling.

Adivertor ~ 0.3 m2

Amain-wall ~ 1 - 5 m2  ??
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Outline

• Global D retention & recovery.

• Boron and deuterium retention in tile gaps.
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Four poloidal locations examined for
tile gap deposition

• Upper divertor
Very far from separatrix in standard divertor
configuration

• Inner wall
Plasma startup on inner wall.
Tiles exposed for ~7 years

• Inner divertor
Nose at entrance to inner divertor
Front-surfaces: some boron deposition caused
by discharge plasma exposure

• Outer divertor
High recycling and power flux.
“Cleaned” plasma-facing side
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Tile gaps in C-Mod

• Typical tile size ~ 25 x 35 mm.

• Nominal gap distance: 0.5 mm.

• Gap surface coverage ~ 2-4% Lower divertor 

Inner wall: tile rotation from
JxB during disruptions 

Upper divertor: 
leading edge melting

Deposition in gaps

toroidal poloidal
Gap orientation
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Analyzed tiles chosen with toroidal/poloidal
uniform deposition profiles -->

improved accuracy for gap “inventory”

• Ion beam analysis at
UW-Madison

RBS (B/Mo)

NRA (B/D)

• ~ 0.5 mm spot size

Upper 
divertor

Inner
wall

Inner
divertor

Outer
divertor

7 mm

Toroidal gaps

• Boron interference
patterns  evident for film
depths ~ 30 - 500 nm.
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 Upper Divertor Tile 1.5mm from surface
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Deuterium is codeposited in tile-gaps
with low-Z boron

• Like front surfaces, Boron + Mo
appear to inter-diffuse

Surface roughness effect?

• Deuterium surface
concentration correlated to
Boron deposition
i.e.  Codeposition.

• Unlike plasma-facing surfaces,
no Deuterium retention in ~pure
Mo deep down gap.
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Boronizations play an important role in
tile-gap deposition on C-Mod

• Boronization provides the “initial” low-Z boron,
some of which is eventually found down tile gaps.

Approx.  5 microns cumulative B layers on tile
surfaces over 5-7 years.

• Deuterated diborane in Electron Cyclotron (EC)
discharge with static BT ~ 0.05 T and Twall ~ 120 C

BT scanned to sweep EC resonance across R.
Typical ECD plasma: T ~ 10 eV, n ~ 1017 m-3

Source of deuterium for codeposition in gaps.

• Boron: i  ~ 20 mm >> gap

• Tile gap deposition during boronizations
must come from neutral boron deposition
caused by dissociation of diborane in ECD.

Geometric model constructed for expected
boron profile down gap.

EC resonance swept
With BT
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Boron gap deposition: Main-wall tiles

Upper divertor

5 mm to last fringe (~ 50 Angstroms)

Toroidal
gap

Poloidal
gap

• Mostly dominated by BZN neutral
deposition?

Inner wall

Toroidal gap poloidal gap

• Poloidal gap consistent with BZN

• Toroidal gap inconsistent with BZN

--> ionic deposition ( i small enough)?
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Boron gap deposition: Divertor tiles

• Consistent with
BZN despite high
rate of deposition
on front surface.

• Poloidal-running
gap identical

• Role of plasma

exposure?

5 mm

Inner divertor (toroidal gap) Outer divertor (toroidal gap)
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Deuterium/Boron generally increases down gap.

 Most deposits very close to surface: 1/e ~ mm

E-folding lengths
of film depth into gaps

Higher D/B further down the gap => Softer B layer
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Boron inventory in gaps generally consistent
with deposition during BZN and quasi-uniform

neutral deposition through tile gaps.

• Divertor ratios of gap/surface distorted
by surface deposition/erosion at
inner/outer divertor.

• Again - difference between poloidal and
toroidal gap deposition may be due to
ionic deposition.
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The external source of low-Z boron onto Mo in
C-Mod valuable for understanding

tile gap deposition processes

• In tile gaps, deuterium codeposition with boron, D/B ~ 2-10%.
Real D inventory in gaps probably larger due to isotope exchange.

• Neutral boron flux through gaps caused by diborane molecule dissociation
during boronizations plays an important role.

Levels of deposition roughly consistent with relative area of gaps in PFCs.
Toroidal gap profile suggest ionic deposition at the outer divertor  and inner
wall.

• As in carbon devices, gaps are a significant location for D retention.
Implications for retention in ITER with metals walls + BZN?

• Boron deposits concentrated within top ~ mm of surface
Geometrical access for removal by optical techniques (laser, disruption, etc.)?
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Deuterium inventory in gaps is not
obviously related to plasma fluence.

Gaps hold ~half D retention at outer divertor.
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